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Abstract. We propose a new supersymmetric (SUSY) method for the generation of the quasi-
exactly solvable (QES) potentials with three known eigenstates. New QES potentials and
corresponding energy levels and wavefunctions of the ground state and two lowest excited states
are obtained. The possibility of constructing families of exactly solvable non-singular potentials
which are SUSY partners of the well known ones is shown.

1. Introduction

About 20 years ago an interesting class of the so-called quasi-exactly solvable (QES) potentials
forwhich afinite number of eigenstates is analytically known was introduced [1-4]. Nowadays,
the QES problems attract much attention [5-19]. Several methods for generation of QES
potentials have been worked outand as aresult many QES potentials have been established. For
example, three different methods based respectively on a polynomial ansatz for wavefunctions,
point canonical transformation and supersymmetric (SUSY) quantum mechanics are described
in[12].

The SUSY method is a very useful tool for the study of exactly solvable potentials. Note
the papers [20, 21] where a SUSY procedure for constructing Hamiltonians either with identical
spectra or with identical spectra, apart from a missing ground state, was given. This procedure
may be repeated again and again to generate hierarchies of Hamiltonians whose spectra are
related to each other. One can find some recent papers on this subject in [22—25]. For a review
of SUSY quantum mechanics see [26, 27].

The SUSY method for constructing QES potentials was used for the first time in [10-12].
The idea of this method is as follows. Starting from some initial QES potential witt
known eigenstates and using the properties of the unbroken supersymmetric one obtains the
SUSY partner potential which is a new QES one witknown eigenstates.

In our previous paper [28] we proposed a new SUSY method for generating QES potentials
with two eigenstates which are explicitly known. This method, in contrast to those of [10-12],
does not require knowledge of the initial QES potential in order to generate a new QES one.
In the present paper we develop this SUSY method to construct QES potentials with three
eigenstates which are explicitly known.
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2. The Witten model of SUSY quantum mechanics

Let us first take a look at the Witten model of SUSY quantum mechanics. The algebra of
supersymmetry in this case satisfies the following permutation relations

{007 )=H [0 H]=0 (09)*=0 @)
where the supercharges read

0*=Bo" Q0 =B'o~ )
o* are the Pauli matrices,

B* = % (:F% + W(x)> (3)
and W (x) is the superpotential. The Hamiltonian consists of a pair of standar@&oler
operatorsH.

H. O

H = ( ! H_) (%)
where

H —B¥Bi——}d_2+V( (5)

=T T 2dx2 *)
andV_. (x) are the so-called SUSY partner potentials
1, , , dw(x)
Vi) = S(W5@) £ W) Wix) = ——. (6)

Consider the equation for the energy spectrum

HoyE(x) = EXyE(x) n=012.... ©)
The HamiltoniansH, and H_ have the same energy spectrum except for the zero energy
ground state which exists in the case of the unbroken supersymmetry. This leads to twofold
degeneracy of the energy spectrunihfexcept for the unique zero-energy ground state. Only
one of the Hamiltoniang/. has the zero-energy eigenvalue. We shall use the convention that
the zero-energy eigenstate belongd#to. Due to the factorization of the Hamiltonia#s.
(see (5)) the ground state féf_ satisfies the equation

B Y5 (x)=0 8
with the solution

Yo () = Cexp<— f W(x>dx> (©)
whereC is the normalization constant. From the normalization condition it follows that

sign(W(x)) = £1 (20)

whenx — £oo.
The eigenvalues and eigenfunctions of the Hamiltonidinsand H_ are related by the
SUSY transformations

E=E, Ey =0 (11)
e L ey
V(X)) = \/ETB ¥, (x) (12)
1
Yr(x) = —=B" Y, 4 (x). (13)

VEmm
The two properties of the unbroken SUSY quantum mechanics, namely, a twofold

degeneracy of the spectrum and the existence of the zero-energy ground state, are used for the
exact calculation of the energy spectrum and wavefunctions (see reviews [26, 27]).
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3. SUSY constructing QES potentials

We shall study the HamiltoniaH_, the ground state of which is given by (9). Let us consider
the SUSY partner ofi_, i.e. the HamiltonianH,. If we calculate the ground state &f.

we immediately find the first excited state Bf using the degeneracy of the spectrum of the
SUSY Hamiltonian and transformations (11)—(13). In order to calculate the ground state of
H. let us rewrite it in the following form

H,=HY +¢ €e>0 (14)

where

1 d
1 _
ande is the energy of the ground state Hf sinceH® has zero-energy ground state.

As we see from (14) and (15), the ground-state wavefunctidh.é$ also the ground-state
wavefunction ofH® and it satisfies the equation

B g (x) = 0. (16)
The solution of this equation is

Yo (x) =C exp(—/ Wi(x) dx). a7

Then using the SUSY transformation (12) we can easily calculate the wavefunction of the
first excited state oHH_. Repeating the described procedure Y we obtain the second
excited state forrH_. Continuing this procedur#’ times we obtainV excited states. This
procedure is well known in SUSY quantum mechanics [20, 21] (see also reviews [26, 27]).
The wavefunctions and corresponding energy levels read

Yo (x) = C,;Bg...B,j_zB;_lexp<— / W,,(x)dx) (18)
n—1
i=0
wheren = 1,2,..., N. In our notationey = €, By = B*, Wo(x) = W(x). OperatorsB;-
are given by (3) with the superpotentids (x). The equation (14) rewritten fa¥ steps
H® = H"™V +¢, n=01...,N—1 (20)

leads to the set of equations for superpotentials
W2(x) + W(x) = W2, (x) — W (x) + 2, n=01,...,N—-1 (21)

Previously this set of equations fdv,(x) was solved in the special cases of the so-called
shape-invariant potentials [29] and self-similar potentials for arbithrfsee review [30]).
For N = 1 one can easily obtain a general solution of (21) without restricting ourselves to
shape-invariant or self-similar potentials. This solution was obtained in [31] in the context of
parasupersymmetric quantum mechanics.

In our recent paper [28] we constructed a non-singular solution of (21y ferl in order
to obtain non-singular QES potentials with two known eigenstates.

In the present paper we use the method proposed in [28] to solve the set of equations (21)
for N = 2. This gives us the possibility of obtaining the general expression for wavefunctions
and energy levels of QES potentials with three eigenstates which are explicitly known.
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Let us introduce the new functions
W (x) = Wyaa(x) + W, (x)

W™ (x) = Wyt (x) — W, (x) n=01...,N—1 (22)
Then equations (21) read
WL (x) = W2 )W (x) + 26, (23)

One can easily solve these equations with respect to the fundidHgx) and obtain the
following expressions for superpotentials

/(n) _
W) = %(wgm(x) . w)

W (x)
1 Wi (x) — 2e,
W, = (W) + ————" 24
+1(x) 2( + (x) Wf")(x) ) ( )
which lead obviously to the following set of equations for the functis® (x)
W/(n) —2 ; W/(n+l) ) ;
Wi (o) + I gy 4 S _g N2
Wi (x) W (x)

(25)

Thus, the set ofV equations (21) is reduced to the setddf- 1 equations (25). In the
simplest cas&/ = 1 equation (25) is absent and relations (24) express just a general solution
of equation (21). To obtain a general solution of the set (21) in the Fase2 we have to
solve one equation,

Wooo + Ve =2 w0 W) =~ 26 (26)
Wi (x) Wi (x)

where we have introduced for simplicity the notation

Wa(x) = WO ) We(x) = WP (). 27)
It is easy to rewrite this equation as follows
Wa () We (0) (Wi (x) = Wa(x)) = (W (x) Wi (x)) + 2(e1Wa(x) + €W (x)) = O (28)
or

U(x) (W[i((xx)) - W+(x)> —U@x)+2 (61W+(x) +e Vlii(?x))) =0 (29)
where we have introduced the function

Ux) = Wi(x)Wa(x). (30)

We again arrive at the Riccati equation with respect/ta). On the other hand, this is an
algebraic equation with respect ¥, (x). Thus, we can start from an arbitrary functiorix)
to construct the function®. (x) and W, (x) which take the form

UMW) +2€) - U L+RW)
W) = T @ R W) = U + 20 1)
where
R(x) = £R(x) (32)
R \/1 UEITELS /2&))(2U<x) —2) @3)
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The square rooR (x) is a positively defined value, while the functi®(x) can be chosen in
the form of R(x) or — R(x) within different intervals separated by zeros of the functiin).
Note that just the possibility of being able to choose different signs allows us, as will be shown
in section 5, to construct in a simple way new exactly solvable potentials using the known
ones.

Now we can obtain three consequent superpoteniiils), W1(x) and W,(x) using the
relations (24). Then using (18) and (19) we obtain the energy levels and the wavefunctions of
the first and the second excited statesHor

1 =€ E; =e+e (34)

Yy (x) = C1Wi(x) exp(— / Wi(x) dx>

Yy (x) = Co((W(x) + Wa(x)) Wa(x) — W) exp(— / Wz(x)dx>- (35)

The superpotential®/;(x) and W»(x) must satisfy the same condition (10) B&x).
This leads to the same limitations for the functid#is(x) and W, (x). Both must be positive
at infinity, negative at minus infinity and therefore each of them must possess at least one
zero. Let us consider first the continuous superpotentials. As is seen from (24), to avoid
singularity of the superpotentials the functioiis(x) andW. (x) each ought to have only one
zero [28]

Wi(x)) =0 Wi(io) =0
at which they must satisfy the conditions
Wi(xo) =2¢  Wi(io) = 2e1. (36)

Thus we have a number of limitations in the choice of the functign) as a product of
W.(x) and W, (x). There are two different possibilities for the choice of the functibm).
Either xog = %o which means that/ (x) has only one second-order zero point and is positive
along the rest of the number line

U(xg) =0 U'(xg) =0 U’(xg) >0 (37)
Ux) >0 X # xo
or xo # Xp and thereford/ (x) has two zero points and changes its sign as follows
Ukx) <0 X € (min[xo, )?0], max[xo, )zo])
U()Co) = U()Eo) =0 U/(min[JCo, )zo]) < 0, U/(maX[X(), )Zo]) >0 (38)
Ux)>0 x ¢ [min[xg, Xo], max[xo, Xo]].

The sign of the functiomR(x) in expressions (31) for the functior&, (x) and W, (x)
should be chosen in a such way to ensure smoothness of these functions and the existence
of one zero for each of them. A full analysis of the conditions which functigm) must
satisfy to provide continuous superpotentials is rather boring and includes consideration of the
behaviour of the function®, (x) and W, (x) near possible zeros of the expressions

U(x)+ 2 U(x) — 2¢; U'(x) R(x) (39)

which is crucial for the continuity of the final superpotenti#dgx), Wi(x) and Wz (x).
We shall consider more closely the simplest case of the funétian which has one zero
point and satisfies the conditions (37). The other condition which the funé&tian must
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satisfy is a consequence of the conditions (36) that connect the derivatives of the functions
W.(x) andW.(x) with the energiegs ande;. One can easily find that
U" (x0) = WY (x0) Wi (xo) + 2W, (x0) W, (x0) + Wi (x0) W (x0)
= 2W,(x0) W, (x0) = 8eey. (40)
The other obvious condition imposed on the functibg) is positivity of the expression under
the square root of the functiaR(x), (33)
U'(x)? +4U (x)(U (x) + 2¢)(U (x) — 2¢1) S
U/(x)Z =
One can easily check th&(xo) = 0. Let us consider the case when the paipts a unique
zero of the functiorR (x). Then the only way to construct non-singular potentials is to chose the
functionR(x) = R(x) over all the line in (32). Moreover, we shall require the functiog)
to be smooth in the vicinity of the poing to avoid cusps of the function&, (x) andW.(x) at
this point. Note that such cusps would resultdlike singularities of the final potentid_(x).
Thus we obtain one of the possible sets of conditions for the funéfion allowing us
to construct non-singular QES potentials with three known eigenstates
U(x)>0 Vx # xo
U(xg) =0 U'(xg) =0 U’ (xg) = 8eeq U"(xq) =0
U® (xo)
8eeq
R(x)>0 Vx # Xo. (42)

Note that most of the exactly solvable potentials which are continuous over all the line
satisfy these conditions.

0. (41)

U™ (x0) = 64eer(er — €) U®(xg) =0 > 32(2€2 — 13¢e; + 2€2)

4. Examples

One can easily check that the simplest functiéhg) yield the well known potentials. For
example, starting fron/ (x) = 4ee1x? ate; = € we obtain the harmonic oscillator potential.
Another simple functio/ (x) = 4ee; tant? x ate; = € — 1 leads us to the well known exactly
solvable Rosen—Morse potential. One more simple exabipt¢ = 4ee; sinkf x ate; = ¢ +%
reproduces the special case of the well known quasi exactly solvable Razavy potential [3].
Let us consider more complicated examples leading to new QES potentials. We shall start

from the function

U(x) = %elxz%zziz (43)
wherea andb are real parameters.
Due to the conditions fot/ ® (xp) andU © (xp) from (42) we get
a® = b%+ %(el —€) (44)
and

respectively; here

2
€ €
A =25— eoﬁ + 68(ﬁ> ) (46)
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Because: andb are real numbers it follows from (44) that
€ 3 e

ERE =2 “n
It is easy to check that

13¢ 15 3 e 3

—————— AL = — 48

45p2 8 Sf b2 2 (48)
and, therefore, (45) together with (44) lead to the following inequality:

3 13 15 3
¢ € ¢ +2VA. (49)

b2 2 b2 4b2 8 8

Thus, in order to obtain non-singular potentials the parameters of function (43) must
satisfy conditions (44) and (49). Moreover, we obviously must require the parareieds
€1 to be positive.

We shall omit the general expression for the poteitidlr) asitis huge and rather useless.
It is easy to show that there are only two sets of positiande; which allow us to resolve
the root in the functiorR(x) (cases 1 and 2) and therefore to simplify significantly the final
expressions. The other simplified expression (case 3) we shall obtain by puting that
corresponds to the lowest value of the parametén inequality (49).

4.1. Case 1

In the case
e =3p? e1= (3 +V3)p? (50)
the square root iR (x) can be resolved and we obtain the potential

v_(x)=<_g_2\/§+3(z+§3>bzxz+ 3-v3 , 13-12 )bz

8 2— /3 +b2x2 (2—«/§+b2x2)2
(51)
and the eigenfunctions
Yox) = C e CRIEEAQ _ /34 p2y?)E=V3/2 (52)
Y1(x) = Cr e @RI _ /3422 VED/2y (53)

Yo(x) = Cre G VIV/40 /34 p2x2)3-DI2p _ /3 p2x2)  (54)
corresponding to the three lowest levels

E; =0 E; =3p? E; = (3+V3)b% (55)
To simplify these expressions let us make the substitution
b? = (2 — V/3)c (56)
Thus, we get
3 3-v3  2/3-3 73 3

V_(x) = [ =c?x?+ + - += 57

(.X) C <8C X 1+C2X2 (1+c2x2)2 4 2) ( )

3

E; =0 E] = 3(1 — §>c2 E; = (3—+/3)c? (58)
Yo (x) =Ce 3L‘2x2/4(1 +sz2)(3—«/§)/2 (59)
Yy (x) = Cp e V¥ /AL + 2 (V3-D/2, (60)

Yy (x) = Co e V341 + 22 (V3 D/12(1 _ (2x?), (61)
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It is worth noting that the obtained potential (57) is a double-well potential. As is well
known, double-well potentials have been used extensively to model a wide range of natural
phenomena.

4.2. Case 2
The other set of positive ande; resolving the root in the functioR (x) reads
€ = 3p? € = b7 (62)
This leads to the well known supersymmetric partner of a harmonic oscillator [22, 23, 33]
3v%  bix2 4h? 2b?
Vo) = 242t (63)

4 8 (1 +b2x2)2 " 1+5b2x2°
This potential is exactly solvable although we have found it using the procedure for constructing
QES potentials with three exactly known eigenstates. We will also obtain the same potential in
section 5 using another procedure which allows us to construct new exactly solvable potentials
(see (81)).

4.3. Case 3

Let us consider another particular case of the potential under consideration which is rather
simple. We put: = 0 to reduce the functio/ (x), (43), to the form
2

U(X) :%Glm. (64)
Due to the relation (44) we obtain the connection between the energiede;
€e=¢€1+ %bz. (65)

Note that in accordance with relation (49) such a choice of parameters corresponds to the
minimal value ofe; at givene andb. It leads directly to the potential

V,(x)_(ozz+30:+1)2+ 1 2 B 2
b2~ Ba(@+1)  1+b%2  (1+b2xD2  p(x)(L+b22)2
o?+a—1 (@ +a+1)3 (@®+a+1)? (66)
p(xX)(L+b%x?)  Ba(a +1)p?(x) 4p3(x)
and the following eigenfunctions
—h Pt _ 1 1 1
05 ) = G2 S el ~So00 (145 + 5 )| 7)
_ X 1 1 1
Yy (x) = Clm EXP[—EP(X) (1 - + o 1)} (68)
_ px)—a—1 1 1 1
=, T = -z 1-=—
Y, () = C2 )1 eXp[ 2p(x)< " a+1)] (69)
corresponding to the levels
Eg =0 Ef = e +3b° E; = 2e+ 37 (70)

where

p() = V1+a@+D1+b2x2)  « :1+2%,

The obtained potential (66) has one minimumxat= 0 and tends to a constant for
x — +o00. For the case > 1 all the obtained wavefunctions (67)—(69) are square integrable
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and there exist at least three bound states in the well(¥6k 1) /2 < « < 1 only two lower
wavefunctions (67) and (68) are square integrable and we have just two bound states, whereas
for @ < (v/5 — 1)/2 only the ground-state wavefunction (67) remains square integrable and
the potential has only one bound state.

5. Constructing exactly solvable potentials

Although we have developed our scheme to construct new QES potentials it seems to be also
of use for constructing SUSY partner potentials for the exactly solvable ones. Let us start from
some exactly solvable potentitl (x)

Vo(x) = 3(W2(x) = W'(x)) (71)
for which we know three first superpotentiais(x), Wi(x) and W»(x) satisfying the set
of equations (21). One can easily construct the functiingx) = W(x) + Wi(x),

Wa(x) = Wi(x) + Wa(x) andU(x) = W.(x)W.(x). Substituting function/ (x) into the
expressions (31), we can obviously reproduce the functiing) and W.(x) by choosing
the corresponding signs in the function (32) which we shall denot®s#8). Besides the
functions W, (x) and W, (x), we can obviously obtain another pair of functions (x) and
W (x) given by the same expressions (31) with the only difference being that here we choose
function (32) with the opposite sign to thatBf(x),

R(x) = —Ro(x). (72)
The new functions/V. (x) and W, (x) satisfy the same equation (26) and they allow us to
construct new exactly solvable potentials.

Let us consider these functions in more detail. Itis easy to show that both funetiqns
andW.(x) are negative at infinity and positive at minus infinity. Explicit calculations show
that they provide the same behaviour of the superpotentidls), W1 (x) andW,(x) which
can be obtained by substitution of functions (x) andW. (x) into relations (24). We shall
omit explicit expressions for the superpotentigls(x) andW,(x) noting only that both of
them are singular while the superpotential
W) = U'(x)(Ro(x) — 1) L Beer— U"(x) +2U (x)(4(e1 — €) — 3U (x)) (73)

2(2¢ + U (x)) 2U'(x)Ro(x)
has no singularities if only the initial potentitll (x) is non-singular. Using the superpotential
W(x) we can construct in a standard way the pair of Hamiltontanand?*.. Their properties
will be very similar to that of the Hamiltonian&_ and H. with the only difference being
that now the Hamiltoniartt. will have zero-energy ground state with the corresponding
eigenfunction

@g(x) = Cexp(/W(x) dx). (74)

Allthe higher eigenvalues of the Hamiltoniaks and?_ will coincide and the corresponding
eigenfunctions will be connected as follows:

d
— + W(x)) o, (x) (75)

Prar(X) = L (
n+1l 26]: d.x

d
—— +W(x)

. (X) L < ) 1 (%)
@, (¥) = —= @1 (X).
! V 281-1:1 dx "
Let us consider a few simple explicit examples. In the case of a harmonic oscillator for
which all the superpotentials and distances between the energy levels read

W,(x) = ex €, =€ (76)
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we find the corresponding function

U(x) = 4e®x? (77)
and we obtain
Ro(x) = R(x) = 2¢x?. (78)
Choosing nowR (x) = —Ro(x) and using (73), we obtain
5 + 2ex2
W(}C) = _Exl+—26x2 (79)
which leads to the following SUSY partner potentials
€2x?  5e
(X)) = — + — 80
Vo) =+ (80)
2x2 4e 8¢ 3
Vo) = 2 . (81)

2 T+ (L+2ad? 2
Thus we have obtained the exactly solvable potential (81) which is a SUSY partner to the
harmonic oscillator potential (80). This potential (81) after substituting 52/2 coincides

with the potential (63) obtained in section 3. Let us recall that the potewtial) has a
zero-energy level with the corresponding wavefunction (74). Therefore, we can now treat
the potentialsy_(x) and V. (x) as V.(x) and V_(x), respectively, that id.(x) = V_(x)

and V_(x) = V.(x). The superpotential corresponding to the plirx) and Vi(x) is

W(x) = —W(x). Because the upper SUSY partriénx) is a harmonic oscillator we can
easily build up all the hierarchy of superpotentials satisfying equations (21):
5 + 2ex?
Wo(x) = €x1+—25; W,(x) = ex n=12.... (82)
The corresponding distances between the energy levels read
€ = 3¢ €, =¢€ n=12.... (83)

The obtained potential (81) can be used to construct another exactly solvable potential.
Starting from the first three superpotentials (82) we obtain in the same way as before the next
pair of potentials

€2x% Qe
(X)) = —+— 84
V_(x) > > (84)
2.2 2 2.2
Va(x) = €xs 8e(2¢x- — 3) N 384“x N E (85)
2 3+12x2+4e2x*  (3+12x2+4e2x%H2 2
Repeating this procedure many times we obtain the following pairs of SUSY partner potentials
2,2 1
Viln,x) =V_(n,x) = eTx + <2n — E) €. (86)
€?x? Hp,_2(i/€x)
Vo, x) =Ve(n,x) = —— +8en(2n - 1)————F——
(n,x) =Vi(n, x) > n( ) Hon(i/ex)
. 2
—16€n2 (HZn—l'(I\/Ex)> + (4}’1 - 1)6 (87)
HZn(I\/Ex) 2

whereH, (x) is the Hermite polynomial. Note that in the case- 1 the potential (87) which
corresponds to (81) and in the case- 2 it corresponds to (85). The potentidds(n, x) (87)
are just the special cases of the SUSY partner potential of a harmonic oscillator obtained by
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Sukumar [21] and they were previously obtained by Bagrov and Samsonov [22, 23] via the
Darboux method and latter by Junker and Roy [33] within the SUSY approach.

The application of the same procedure for the Morse and Rosen—Morse potentials as well
as for the radial harmonic oscillator and the hydrogen atom provides chains of exactly solvable
potentials. All these potentials are just special cases of the potentials obtained in [33] by Junker
and Roy. Nevertheless, they seem to be interesting because they are all expressed in terms
of the elementary functions only. For example, starting from the Morse potential for which
corresponding superpotentials and distances between the energy levels read

W,(x) =€+1/2—n—¢e* €, =€—n (88)
we construct the function
Ux)=4e—-—€eM)e—-—1—-¢e"). (89)

An explicit calculation shows us that we should take the funcigtx) in the form

4eZ+6(1—2c)e* +3(L+4e(e — 1)) — 2(1 — 3¢ + 2¢?) e
Ralx) = 2e +(1—2¢) (%0)
to reproduce the Morse potential. The functiBg(x) does not coincide witlR(x) in this
case, the former is negative within the interval limited by zeros of expression (90). Following
the same procedure as in the case of the harmonic oscillator, we obtain such a sequence of

potentials

(1+ 2)2 . e _2e+1e

Vo(0.3) = = 5 ©1)
V)= 1 +825)2 N e — 2(; ~Der - 2(22(:(_261)—;)+e;(;€2)_ o

- 2('2( (Eel;ei)i (_261)— 1)e>)? 2
V@) = (1 + 2)? . e _2(e—-3) e

8 2
N (2¢ — 3)(8€" — (¢ — 1)(48 € — (2¢ — 1)(36 €* — 16 €™)))
4— (2 —3)Be — (e — (12 — (26 — 1)(4e¥ — e e¥)))
N ((2e —3)(B€ — (¢ — 1)(24€* — (2 — 1)(12€* — €4 €¥))))? (93)
(4—(2¢ —3)(8€" — (e — 1)(12€* — (2¢ — 1)(4 € — e €*))))2’
The corresponding SUSY partners are the following Morse potentials

1+2)° e _—26e—2n)e*
Vi(n, x) = gt > :

We can proceed with this procedure as long as necessary.
The most interesting fact is that at each step of the suggested procedure for all the above-
mentioned potentials

H_=H® +e+ey. (95)
One can easily check that due to the connection (11) and (20)

2+ @- D+ . B
El(l) = En+1 = En+1 — €= En+2_61_6 = En+3_61_6 (96)

(94)

and therefore the energy levels of the Hamiltorflan coincide with that of the Hamiltonian
H_ saving the three lowest levels of the latter which are not present in the spectrum of the
former

& =E,, n=01,.... (97)

n



2168 TV Kuliy ard V M Tkachuk

This gives us immediately the energy spectrum of the new Hamiltarian
& =0 E =E n=12,.... (98)

Moreover, the connection (95) allows us to easily obtain all the eigenfunctions of the excited
states for the new exactly solvable potential. Using relation (75) we obtain

d
or(x) =Cy (d— + W(x)) vPi) n=12.... (99)
X
Thus for all the mentioned exactly solvable potentials we can construct a sequence of
HamiltoniansH, = —31d?/dx? + V (n, x) with the same energy levels &% except the 2

lowest excited states of the latter. They all possess the zero-energy ground state.

6. Conclusions

We have obtained a general solution of the set of equations (21¥ fer 2 given by the
expressions (31) and (24) = 0, 1). Thus we can write down explicit expressions for the
superpotentials¥o(x), Wi(x) and Wa(x) and then for the potential® (x) = (WZ(x) —
Wi(x))/2. 1t will be just a general expression for a QES potential with three eigenstates
which are explicitly known. General expressions for the corresponding eigenfunctions are
also presented, (9) and (35). The QES potential is expressed in terms of the digtances
ande; between neighbouring energy levels and an arbitrary funétior). To ensure non-
singularity of the potential we need to put a number of limitations on the funétian. Using

this expression we have obtained some new QES potentials. In special cases our potentials
reproduce those studied earlier.

There obviously arises a question as to whether the suggested scheme could be generalized
to construct QES potentials when the number of explicitly known eigenstates is larger than
three. In such a case we have the set of equations (25) consistvg-df equations. Let us
recall thatV is the number of known excited states of the QES potential which we would like
to construct. In order to reduce this set of equations we can proceed with the scheme described
in section 3 (equations (21)—(31)).The solution of each equation of the set (25) can be written
down in the form (31), wher&, (x) is replaced by (x), W (x) is replaced byv{"*? (x)
and we havé/, (x) = W (x) W (x) instead oft/ (x). Two neighbouring equations of the
set (25) yield two different expressions for the same functidfy in terms of the functions
U,(x) andU,+1(x) correspondingly. Thus, we obtain the following set of equations for the
functionsU, (x)

Up(x) (L+Ry(x))  2Ups1(x) (Upsa(x) + 26,41)
2Un(x) +26,)  Upy(x) (1 +Rpea(x))
where

n=0,...,N—3 (100)

Ru) — \/1 4 U@ W) + 26) Uy (x) = 2611) 101)

U, (x)?

The number of equations in this set is one less than the number of equations in the set (25) for
the functionsw." (x) and correspondingly it is two less than the number of initial equations
(21) for the superpotentials. In the ca8e= 3 we have just one equation which we need to
solve to construct QES potentials with four known eigenstates. Thus, one can see that to obtain
the general expression for QES potentials with more than three explicitly known eigenstates
is essentially more complicated.

Another point is that the suggested scheme allows one to construct in a simple way the
sequences of SUSY partner potentials of exactly solvable ones. At each step we obtain a
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new exactly solvable potential with an identical spectrum, apart from missing the two lowest
excited states. Note that this approach, in contrast to the method used in [20-23, 32, 33], does
not require knowledge of the general solution of the corresponding8ictyer equation for

the initial potential. It would be interesting to apply the same approach to the known QES
potentials with explicitly knownV eigenstates to construct new QES potentials with the two
lowest excited states picked out. However, the latter case is more complicated than the case
of shape-invariant potentials and will be the subject of a separate paper.
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